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Abstract

ChatGPT’s role in creating multiple-choice questions (MCQs) is growing but the validity of these artificial-intelligence-generated
questions is unclear. This literature review was conducted to address the urgent need for understanding the application of ChatGPT
in generating MCQs for medical education. Following the database search and screening of 1920 studies, we found 23 relevant studies.
We extracted the prompts for MCQ generation and assessed the validity evidence of MCQs. The findings showed that prompts varied,
including referencing specific exam styles and adopting specific personas, which align with recommended prompt engineering tactics.
The validity evidence covered various domains, showing mixed accuracy rates, with some studies indicating comparable quality to
human-written questions, and others highlighting differences in difficulty and discrimination levels, alongside a significant reduction
in question creation time. Despite its efficiency, we highlight the necessity of careful review and suggest a need for further research to

optimize the use of ChatGPT in question generation.

Main messages

ChatGPT prompts when generating MCQs.

relevance.

¢ Ensure high-quality outputs by utilizing well-designed prompts; medical educators should prioritize the use of detailed, clear
¢ Avoid using ChatGPT-generated MCQs directly in examinations without thorough review to prevent inaccuracies and ensure

¢ Leverage ChatGPT’s potential to streamline the test development process, enhancing efficiency without compromising quality.
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Introduction

ChatGPT has emerged as a useful companion to humans with
potential benefits in medical education [1]. Its adoption in medical
education can be particularly significant, where medical edu-
cators are continually seeking innovative methods to enhance
learning [2] and assessment. Among the potential innovations, the
use of ChatGPT for generating multiple-choice questions (MCQs)
has captured interest due to this format’s ubiquity in written
assessments. The format is ubiquitous because MCQs serve as a
useful, which means efficient, scalable, and cost effective, mate-
rials in assessing medical students’ and residents’ knowledge,
clinical reasoning, and problem-solving skills [3].

However, while ChatGPT’s utility in creating educational con-
tent is promising, the validity of the MCQs generated through
this artificial intelligence (Al)-driven approach remains unex-
plored. Validity, in the context of educational assessments, is
crucial, ensuring that the questions accurately measure what
they are intended to. The quality of the prompts given to Chat-
GPT directly influences the quality and relevance of generated

MCQs, thereby impacting the validity of MCQs. Despite its crit-
ical importance, there exists a noticeable gap in the literature
regarding the validity of MCQs generated by ChatGPT in medical
education.

This gap is significant as the integration of Al tools in educa-
tional settings accelerates. Cross-sectional studies showed that
medical educators and students, both in undergraduate and post-
graduate levels, use ChatGPT for various purposes [4-6] including
for question generation [7]. Therefore, it necessitates an under-
standing of assessment validity of ChatGPT-generated MCQs. The
previous reviews were too broad and have not fully explored
and documented the prompts whether they generate high-quality
MCQs [8].

Addressing this gap is crucial. It will provide medical educators
with insights into the effective use of Al for MCQ generation. It
also will contribute to the broader discourse on the integration
of artificial intelligence in educational practices, particularly the
field of medicine requiring high levels of accuracy. By identifying
the strengths and limitations of ChatGPT-generated MCQs, this
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research can guide the development of optimal strategies for Al-
assisted test development in medical education.

Therefore, this rapid review aims to answer the following
research questions:

1. What prompts have been used for MCQ generation using
ChatGPT in medical education?

2. What is the validity evidence of the MCQs generated using
ChatGPT in medical education?

Materials and methods

We opted for conducting a rapid review due to the urgent need
for information about the use of Al, specifically ChatGPT, in gen-
erating MCQs for medical education. Given the fast-paced devel-
opments in Al and its growing application in medical education
settings, there was a pressing demand for immediate guidance
and understanding that could inform educators and test devel-
opers. This approach allowed for a quicker synthesis of available
evidence, providing early, actionable findings to stakeholders in a
rapidly evolving field. We followed the practical guide for rapid
reviews [9] to ensure a methodologically sound and efficient
approach.

Search strategy

The literature search was designed to identify studies involving
the use of ChatGPT for the generation of MCQs in medical educa-
tion. Therefore, the search terms used were (“ChatGPT” OR “Chat
GPT") AND (“medicine” OR “medical”). The search was conducted
without any time restrictions and up until February 15, 2024.
The databases searched included PubMed and Web of Science,
adhering to the recommendation of searching at least two elec-
tronic databases [9]. The search included all fields in the studies.
The initial search was conducted by one researcher, yielding 1690
studies from PubMed and 1063 studies from Web of Science. After
removing duplicates with the help of a reference management
tool, 1920 articles remained for title and abstract screening. After
the screening process, we also searched the reference lists of the
eligible studies [9].

Inclusion and exclusion criteria

The selection criteria included any study that reported the use
of a prompt for generating MCQs within a medical education
context. We did not limit the type of publications (e.g. research
articles, reviews, commentaries). Exclusion criteria were studies
not published in English and those outside of medical education
(other health professions education, such as, nursing, dentistry,
and pharmacy).

Screening of the studies

To enhance the reliability, two reviewers involved in the screening
process. The screening began with titles and abstracts together,
resulting in 158 studies selected for full-text screening in terms
of the criteria. Following the full-text screening, only 21 articles
met the criteria. The search in the reference lists added two more
studies suitable for full review, bringing the total to 23 studies.
Since we invested considerable effort to achieve a shared under-
standing before screening, we encountered minimal number of
discrepancies between the two reviewers. These were resolved
through discussion.

Extraction of the data

Data extraction was carried out by the experienced researcher
on ChatGPT for question generation (YSK), focusing on key
information such as author(s), date of publication, publication
type, ChatGPT version used, the prompts employed, the number
of MCQs generated, any further modifications made to the
questions, the basis of evaluation presented by the studies,
and the outcomes. Although the guide recommended as a
reasonable approach that a second reviewer should check a
10% random sample for accuracy [9], in this study, the second
reviewer (EE) verified the extracted data from all 23 studies. This
process identified and corrected five instances of inconsistency
or error overlooked by the first reviewer in the initial review
process.

Assessment of the results

Prompts were evaluated considering the prompt engineering
strategies and tactics described in a guide provided by OpenAl
[10]. Some of them are: Write clear instructions, provide/mention
examples, instructing to answer using a reference text, and ask
the model to adopt a persona. The complete list of these strategies
and tactics is presented in Table 1.

Validity was assessed by considering five major sources of
validity evidence in testing [11]: First, “content” examines the
relationship between test content and the intended construct.
Second, ‘response process” focuses on individual responses
and their alighment with intended interpretations. Third,
“Internal structure” focuses on the reliability and statistical
characteristics of items within the assessment, such as, item
difficulty and discrimination, and functionality of distractor
options. Fourth, “relations to other variables” involves exter-
nal data analysis, such as correlations with independent
measures. Fifth, “evidence based on consequences of testing”
focuses on the impact of assessments on individuals, institu-
tions, and society, considering both intended and unintended
effects.

Results

What prompts have been used for MCQ
generation using ChatGPT in medical education?

We presented the prompts in Table 2. Four studies did not provide
the prompt they used [12-15] and five studies did not report the
version of ChatGPT [12, 16-19].

Six studies asked ChatGPT to generate MCQs based on a known
style, such as, American Board of Dermatology Applied Exam [20],
The United States Medical Licensing Examination (USMLE) [12,
17,21, 22], and The National Board of Medical Examiners (NBME)
[19]. This strategy aligns with providing/mentioning examples as
a prompt engineering tactic.

Three studies used another prompt engineering tactic by
asking the model to adopt a persona. These prompts were “You
are a developer of teaching materials ...” [23] and “You are
developing a question bank for medical exams ...” [24, 25].
Three studies submitted text for ChatGPT to generate responses
using the provided text as a reference [18, 20, 26], a tactic
that is also recommended. Five studies were so kind in their
prompts as they used “please” to ask the model to generate
questions [22, 27-30], even if it is not a prompt engineering
tactic.
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Table 1. OpenAl guidance on prompt engineering.
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Strategy Tactics

When/Why to use

Write clear instructions Include details in your prompt

Ask the model to adopt a persona

Use delimiters to clearly indicate parts

Specify steps to complete a task

Provide examples

Specify desired output length
Provide reference Text

Instruct to answer using a reference text

When specificity is needed for relevance.

To guide the model’s tone or perspective.

For complex inputs requiring clear separation.

For tasks that can be broken down into sequential actions.
To model a desired format or approach.

When output needs to be within certain length constraints.
To base responses on provided material for accuracy.

Instruct to answer with citations from reference text When referencing specific information directly from

Split complex tasks into simpler  Use intent classification
subtasks

Summarize/filter previous dialog

Summarize long documents piecewise

Give time to “think”
concluding

Use inner monolog or sequence of queries
Ask if anything was missed previously

Use external tools

Use code execution for calculations or API calls

Give access to specific functions

Test changes systematically
answers

Instruct model to work out its own solution before

Implement embeddings-based search

Evaluate outputs with reference to gold-standard

provided texts.
To identify and address specific parts of a complex query.

In long dialogs, to maintain relevance and context.
When dealing with content that exceeds model’s context
window (allowed input load).

For reasoning tasks requiring step-by-step processing.

To internally process reasoning before providing an answer.
To ensure comprehensiveness in tasks requiring thorough
exploration.

For enhancing model’s knowledge with external
information.

For tasks requiring precise calculations or external data.
To benefit from specialized functionalities in specific
contexts.

Testing is always helpful.

What is the validity evidence for the MCQs
generated using ChatGPT in medical education?
Content

The generated questions were on various domains and diseases:
Physiology [16, 31], dermatology [20], anatomy [13, 14, 30],
immunology [32], internal medicine [26], surgery [26] and neu-
rosurgery [14], anesthesia [15], clinical pharmacology [25], carpal
tunnel syndrome [12], syndrome of inappropriate antidiuretic
hormone secretion [21], diabetes [28], hyperlipidemia [29], anterior
cutaneous nerve entrapment syndrome [23], urinary tract
infection [33], hypertension [24, 25], chondroid tumors [18], and
reproductive system [19].

The rates of MCQs that have inaccuracies based on expert
reviews were 60% [20], 21% and 37% [34], 1% and %15 [27], and
16% [31]. One study reported that all MCQs were considered
acceptable in an expert panel [25]. However, each study used
different criteria with small number of experts. One study found
that a large proportion of the ChatGPT-generated questions were
nearly identical [34].

Response process

All studies generated single best answer MCQs in English, some
with five options, and others with four options.

Internal structure

Three studies conducted item analyses [19, 25, 31]. In one study,
two case-based MCQs produced ideal discrimination levels (above
0.30), which are 0.41 and 0.39 [25],in an exam consists of 25 MCQs
(23 were human-written). Difficulty levels were 0.78 and 0.58 [25],
which are easy and moderate, respectively. In another study, the
average of discrimination scores of 21 MCQs was 0.24, which is

acceptable (above 0.20) but some particular MCQs had unaccept-
able discrimination levels [31]. Average of difficulty levels of 21
MCQs was 0.62 [31]. In a study that carried out an editing process
after generating MCQs, 29 MCQs’ discrimination level was 0.23,
which is not ideal but acceptable, and average difficulty level was
0.71[19].

Relations to other variables

Some studies compared different aspects of ChatGPT-generated
and human-written MCQs. In one study based only on expert
reviews, “appropriateness, clarity and specificity, discriminative
power, and suitability for medical school exams” of MCQs gener-
ated by using ChatGPT were comparable to human-written MCQs
but inferior in the relevance criterion [26]. In one study based on
administering MCQs in exams, human-written MCQs had signifi-
cantly higher levels of discrimination but similar level of difficulty
[31]. In another study, ChatGPT-based MCQs had similar levels
of discrimination and difficulty with human-written MCQs but
this study carried out further modifications on the MCQs before
administering them [19].

Evidence based on consequences of testing

Although several studies mentioned that ChatGPT can expedite
item writing process, one study reported that ChatGPT reduced
MCQ creation time from an estimated 30-60 minutes per
MCQ to 5-15 minutes but these were case-based MCQs [19].
Another study reported that ChatGPT generated 50 MCQs
(not case-based) within 20 minutes and 25 seconds, whereas
humans spent 211 minutes and 33 seconds for writing 50
MCQs [26].
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Discussion

This rapid review seeks to explore the use of ChatGPT in generat-
ing MCQs for medical education, focusing on the prompts used for
generation and the validity of the generated questions. This is in
response to the increasing integration of Al tools like ChatGPT into
material generation in medical schools [7], especially for creating
MCQs that are very common and useful in assessing medical
students’ knowledge and clinical reasoning [3].

The findings highlight the diversity in the application of Chat-
GPT for MCQ generation across different medical fields such as
physiology, dermatology, anatomy, and internal medicine among
others. The findings show that the prompts align with recom-
mended prompt engineering tactics [10], such as, referencing to
specific exam styles [19], providing a reference text [26], directing
the AI to adopt a test developer role [23], or providing clear and
detailed explanations on what is needed in an MCQ [25], could
yield better outputs. In parallel with this, a prompt such as “Write
4 multiple choice questions with 4 answers and explanations for
the incorrect and correct answers” resulted in ChatGPT’s failure to
generate suitable MCQs [32], due to the absence of a reference to
an existing format or detailed explanation in the prompt. There-
fore, medical educators looking to create MCQs should either
leverage prompt engineering strategies or employ existing, well-
designed prompts. A useful example is a customized ChatGPT for
generating MCQs, called Case-based MCQ Generator, which works
based on published prompts in the literature [35].

In terms of validity evidence, the studies found varying levels
of content accuracy among the MCQs generated by ChatGPT, with
some studies noting significant inaccuracies [20, 32]. Although
some of these problems can be attributed to poorly designed
prompts, they also underscore the importance of expert review
and the need for paying attention to the possible inconsisten-
cies in the Al-generated MCQs. Moreover, the internal structure
validity of the MCQs, including their difficulty and discrimination
levels, was assessed in some studies, revealing mixed outcomes
with some questions performing well [19, 25, 31] while others
did not meet acceptable standards [31]. However, the results are
promising because it significantly reduces the amount of time
required for developing an MCQ [19, 26]. Although there are limita-
tions, the efficiency achieved through Al would seem remarkable
to test developers from a decade ago who were accustomed to the
effortful task of manually creating MCQs. Despite the efficiency
of Al in creating MCQs, it is crucial to note that the necessity to
review each MCQ remains. This is due to Al's tendency to pro-
duce misleading or incorrect information [36], thus ensuring their
accuracy becomes a cumbersome process. Consequently, unlike
template-based MCQ generation, which permits simultaneous
review and revision of hundreds of questions [37], this method
does not support such efficient bulk editing yet.

While we interpret the variability in question performance
mainly through the lens of prompt engineering, the early stage
of research limits our capacity to establish connections with
other influencing factors. Some may suggest that factors such as
learner level, the category of medicine, and question length could
also play an important role. Their potential impact implies the
need for further accumulation of research. Such studies should
aim to assess how varying these parameters might influence the
performance of ChatGPT-generated MCQs. The results of these
studies can shed light on developing optimal strategies for using
Al for test development.

There are several limitations in this rapid review. The first lim-
itation stems from the inherent characteristics of rapid reviews,
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which prioritize speed over comprehensive analysis. Second, its
focus is on ChatGPT, while justified given its prominence among
Al tools, may not provide insights applicable to other Al models,
thus limiting the generalizability of the findings. However, it
remains a valuable resource for those specifically interested in the
capabilities of ChatGPT. Third, the limited number of published
studies might not provide a solid foundation for drawing definitive
conclusions yet. Despite this, the gathered evidence could still
offer fruitful insights for medical educators seeking to understand
the potential and limitations of using ChatGPT to generate MCQs.
Additionally, we revealed the need for conducting more studies
on different aspects of MCQs generation using ChatGPT. Instead
of asking human-generated questions to ChatGPT over and over,
researchers should focus also on asking ChatGPT-generated ques-
tions to humans in order for assessing validity evidence and find-
ing ways for an optimal use of ChatGPT in question generation.
Additionally, there is a need for research focused on generating
questions in languages other than English.

Conclusions

The findings from this review are crucial for medical educators
considering the use of ChatGPT for MCQ generation. We point out
the need for careful design of prompts and thorough review of Al-
generated questions to ensure they meet educational standards.

Conflict of interest statement: None declared.
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